PROCEEDINGS

of THE

BIOLOGICAL SOCIETY OF WASHINGTON

SOME NOTES ON FISH SCALES.

BY T. D. 1. COCKERELL.

Last summer, thanks to the Bureau of Fisheries, I was enabled to continue my work on fish scales at Woods Hole, where I obtained much interesting material not previously available. Thanks to Dr. F. B. Sumner, Dr. Hugh M. Smith, Dr. B. IV. Evermann and others, I have befure me a remarkable collection of fish scales, which will form the subject of a report later on. In the meanwhile, the following notes are offered. They were written and sent for publication before I knew how much material I was to obtain, or that means would be found for the publication of a detailed illustrated report.

PLEURONECTIDE AND SOLEIDE.
The following table will serve for the separation of the scales of a series of flat-fishes, all in the collection of the Burean of Fisheries station at Woods Hole, except Plutophrys constellatus, which is from the collection of the Bureau in Washington.
A. Scales etenoid on both side: (Soleidr).

Apical teeth large and few (6 or $\overline{7}$ on upper, 3 to $\overline{5}$ on lower side),
with a well-marked zone of large reticulations at their base
Achirus lineatus (1.).
No such zone of reticulations at the base of the teeth 1.

1. Scales narrow, with \& to $\because 0$ basal rarlii Solea solea (L.).
scales larger and broader, with orer 30 basal radii

> Symphurus piger (Goode and Bean). Gulf Stream.

Of these, the Achirus must be considered the most modified. The three genera represent the subfamilies Achirime, Soleinæ and Cynoglossinæ.
B. Scales ctenoid above, cycloid on the lower (blind) side (Pleuronectidæ).

Scales large, minutely ctenoid above 1.
Scales minute . 2.

1. Lateral areas with very fine radiating strie . Syacium papillosum (L.). Albatross sta. 2405.
Lateral areas without such strize . . . Citharichthys arctifrons (ioode.
2. Basal radii so many and close as to produce the effect of a fine striation; scales broad
3.

Basal radii not thus numerous
4.
3. Apical teeth of scales on upper side of fish projecting beyond margin Platophrys constellatus Jortan. Magdalena Bay (Albatross).
Apical teeth of scales on upper side submarginal; so that the scales seem cyctoid Platophrys ocellatus Agassiz. Albatross Sta. $2+14$.
4. Basal radii many, about $15-20$ on lower, over 20 on upper side; teeth of ctenoid scales few (abont 5 to 7) and very sharp . . . Pseudopleuronectes americanus Walh.
Bawal radii fewer
5.
․ Lateral areas, free from radii, extensive, their circuli dense
Notosema dilectum Goode and Bean.
Lateral areas, free from radii, small
6.
6. Seales imaller, radii more parallel . . . Limanda ferruginea storer. scales larger, radii less parallel.

Hippoglossoides platessoides Fabricins.
The last two are nearly alike.
C. Scale cycloid on both sides (Pleuronectidre).
Scales very small, long-oval, basal radii few.
Glyptocephalus cynoglossus L.
Albatross Sta. 2546 .
Scales much broader, basal radii many
1.

1. Scales smatler; those of lower side about half size of those on יpper Lophopsetta maculata Mitch. Scales larger ; those of lower side not so much smaller than those of upper Paralichthys oblongus Mitch.

The Clyptocephalus scale is the most modified (degenerate) of the whole series. Some Achirine (not seen by me) are scaleless. With regard to the subfamilies of l'leuronectitre, it will be noted that each subfamily has produced a gemens with eycloid scales on both sides.

It is is obvions that the flat-fishes are descended from fishes with the typical Acanthopterygian (ctenoid) type of scales, and that the cycloid scales have arisen throngh loss of the ctenoid character. From all we know about inheritance, it appears practically certain that this character, once completely lost on the lower side, would not return in the welldeveloped condition in which it occurs in the soles. It must, therefore, be held that the Soleidæ are not derived from the ordinary Pleuronectidie, but rather from some ancient type of flat-fish, probably now without living representatives. There is, however, a living genus of Pleuronectids
having etenoid scales on both sides like the soles, namely Ancylopsetta, said to be very clase to Paralichthys.*

I had reached these conclusions from the seales, when I fortumately met Professor (x. H. Parker, and mentioned them to him. He at once kindly directed my attention to his paper on the optic nerves of that-fishes, puthlished in the Bulletin of the Museum of Comparative Koology, Vol. NL (190:3). In this work he shows that the condition of the optic chiawna in the Soleide is as in ordinary Telensts, whereas in the Plemronectide it is modified. He therefore concluded that " the Soleide are not degraded Pleuronectidre, but degenerate descendants of primitive flat-fishes, from which the I'leuronectide have probably been derived." The soleirl genera examined by Professor Parker were the same as mine; his Pleuronectids were Atheresthes, Eopsetta, Hippoglossoides, Psettichthys, Paralichthys, Ifypsopsetta, Parophrys, Isopsetta, Oncopterus, Limanda, Pseudopleuronectes, Ilfuronectes, Liopsetta, Glyptocephalus, Lophopsetta, Platophrys, Syacium, Azevia, Citharichthys, Etropus. Unfortunately, he did not see Ancylopsetta, but it seems very unlikely that it would depart from the condition he found in all the other genera.

GADIDE AND ALLIEs.

The table below separates the scales of a number of Garloids, the specimens all from the Burean of Fisheries Station at Woorls Hole, except the Macrouride, which are (except Macrontus sp.) from the U. S. National Museum.
A. Apical field of scales with long spines (Macrouride).

Basal circuli sharply angulate in the middle 1.
Basal circuli not sharply angulate 2.

1. Apical teeth shorter, densely set, no circuli visible between them

Macrourus bairdii Goode and Bean.
Lat. 39.53 N., Long. 70.9 W . (Albatross).
Apical teeth longer, not densely set, circuli very conspicnons between them Macrourus sp. Albatross sta. $2+26$.
2. Scale very broad and short; teeth very long, many projecting far beyond margin Coryphrenoides rupestris Gmner. (Albatross.)
Scale not greatly broater than long; teeth shorter, not or hardly projecting beyond margin. Coelorhynchus caribbrus (Gioode \&\& Bean).

These scales must be called ctenoid, yet the margin itself is not dentate, except slightly in Macrourus sp. The scales of Capros, as figured by Goodrich, have similar teeth; Capros is, of course, an entirely different fish.

[^0]B. Scales cycloid, wholly withont sines (Cradidee and Merlneciitie).
a. Scales withont ranlii (Merluceiilar, Mhycinat, (iaidrop):ariner).
Scale elongate, with astrong median thanserse forrow, varionsly developed, sometimes only near the margins, never croswing the nucleus; circuli not angled Enchelyopus cimbrius (L.). Eel Pond, Woods Hole.
Scales larger, rather broad, withont such a distinct median furrow, and with the basal circuli varionsly angled.

1. Rewion above the molens (except in latinucleate* scales) conficumely finely pitted Merluccius bilinararis (Mitrhell). Woods Holle, Mas-
Region abose the muclens not or hamlly pitted. Crophycis regius (Wall.). Woods Hole, Mass.
b. Scales with mumerous radii ((iadine, leromine).

Scales very long and harrow (ahout 4 mm . and $1 \frac{1}{2}$ broad), the central area usually free from seulpture and the fine ralii lmoken Brosme brosme (Müll.)
Scales not so long and narmow, malally with a fine reticulated sculpture all over, thongh latinneleate scales of Mirrogadus resemble those of Brosme in structure though not in shape .
1.

1. Scalew combarively large, about 7 to s mom. long and 4 to \bar{s} broad Melanogrammus aglefinus (L.).
Neales smaller, less than $\overline{5} \mathrm{~mm}$. long
2.
3. Scales smallest (about $2 \mathrm{~mm} . \operatorname{long}$), narrow . Pollachius virens (L.). Womeds Itole.
S"ales medinm (hetween :3 and 5 mm.) Gidus callarias L. and Microgadus tomcod (Wall.).

The scales of the Macromridg, except for the shape (round or transversely elongate) and the spines, agree with those of the Merlucciidee and Phyeina, having mose or lese angled cireoli and no radii. Those of the fradine and Bromine are entirely different, and conld mot have been derived from those of the others. According to the seales, some type allied to the Macmomide may have given rise to the different lines represented hy Merluccius, Crophycis and Eurhelyopus; hat the (iadinæ with the Bromine must have another origin, although no doult all can be referred to a common ancestor by going hack far enough. There is no essential difference between the Gadine and Bromine seales, but in my preparation of Prosme all the scales are latinucleate except one.

[^1]
('V'PRINII).

The following interesting speries are describest from the eollection of the Bureal of Fisheries at Washington and (Algansed and Lepidomede) the National Musem:
(1.) Algansea sallapi ((iunther). Scales oblong, suburadrate, nearly parallel-wided, slightly over 2 mm. long, about $1^{\frac{3}{5}}$ wide; nuclens subbasal; ratii all aromul; apical radii ahont 10 or 12, the interradial cirenli very witely spaced. This is one of the few American Cyprinids having basal ratii; the scales are not unlike those of Temeculina. The fish is from Guanajuato, Mexicn (A. Dugès).
(ㄹ.) Mylocheilus caurinus (Richarkon). Snake River, Hahn (Evermann). Large scales, about $5 \frac{1}{3} \mathrm{~mm}$. long and 5 broad; muelens subbasal; no basal radii; apical radii abont 25 or more; apical cirenli widely spaced, not at all angulate in midelle; very obtuse laterobasal angles. Except for the non-angulate apical cireuli, this reminds one of Semotilus.
(3.) Richardsonius siuslani (Evermann \& Meek). Siuslaw River, Oregon (心, E. Meek). Scales quite normal for the typical sulgenus Richardsonius ; apical radii alront 18 , some imperfect.
(4.) Exoglossum maxillingua (Le Sueur). Roanoke, Va. Scales ahout $21 / 2$ to $23 / 4 \mathrm{~mm}$. long and broad; nucleus subbasal; no basal radii; apical radii abont 20 ; apical circuli widely spaced, not angled; laterobasal angles evident but obture. The structure is almost as in Mylocheilus.
(5.) Lopidomedu vittata Cope. Colorado Chiquito River. Transuersely wal scales, with the usual suhbasal mucleus; apical radii about 7 , strong; no basal radii; apieal circuli extremely widely spaced. These scales are quite different from those of Gila, a fact useful for the separation of the fishes from juvenile Gila, occurring in the same region.

[^0]: *Jordan \& Evermann, Bull. 47, U. S. N. M., Part III, p. 2634. In this work the scales of Paralichthys oblongus are said to be " weakly ctenoid or cycloid." Those examined by me are strictly cycloid.

[^1]: * Latinucleate scales are those in which the nuclear region is broadly modified, the normal seulpture largely suppressed or altered, and the radii more parallet. This dimorphism is of general occurrence among fish scales, and a ppears to be due to regeneration after loss of the original scales.

